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• Lecture aims:

• Have a working knowledge of  reference inputs, optimal control, and internal model

design.



Introduction

Control problem:

Find stabilizing control strategy that

• Minimize objective functional

• Satisfies constraints

• is robust towards uncertainty 



Introduction

Control problems:

1 The Minimum Time Control Problem

2 The Terminal Control Problem

3 The Minimum Control Effort Problem

4 The Optimal Servomechanism or Tracking Problem

5 The Optimal Regulator Problem



Solution strategies

Closed loop optimal control

Feedback: u=k(x)

s.t. closed loop trajectories satisfying optimality

Advantages:

• Feedback

• Uncertainty

• Disturbances

• Unstable systems

Drawbacks

• Find k(x)?

Open loop optimal control

Input trajectory: u=u(t,x0)

solving optimization problem

Advantages: 

• Computationally feasible

Drawbacks:

• No feedback

• Disturbances?

• Unstable systems

• Uncertainty



Possible solution 1 : MPC with online optimization

• Solve optimization problem over finite horizon 

• Implement optimal input for 2[t,t+d]

• Re-optimize at next sample (feedback)

• Optimal control inputs implicitly via 
optimalization

t
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MPC with online optimization

(Allgöwer, 2004)



General Case

• Min/max
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General Case

• Min 

• Φ = Endpoint cost- final product

• L = Lagrangian – describes dynamics of  system

• u = Control – what we can do to the system

• X= State – properties of  the system



General Case

Matrix Riccati Differential Equation

The final condition of  matrix P(t) and

matrix K(t) is called the Kalman matrix



General Case

Matrix Riccati Differential Equation

S is positive definite and Q(t) is at least nonnegative definite, 

or vice versa, and R(t) is positive definite, then a minimum J

exists if  and only if  the solution P(t) of  the

Riccati equation



Discrete-Time State-Space Model
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The above state-space system is deterministic since no

noise is present.



Discrete-Time State-Space Model

We can introduce uncertainty into the model by adding noise terms

This is referred to as a stochastic state-space model.
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Discrete-Time State-Space Model
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Xk - state vector

A  - system matrix

B  - input matrix

C  - output matrix

yk - output (PVm)

yk - noise free output (PV)

wk - process noise

nk - measurement noise

uk - control input (MV)

This is illustrated below:



Observers

We are interested in constructing an optimal observer for the 

following state-space model:

An observer is constructed as follows:

where  J is the observer gain vector, and      is the best estimate 

of  yk i.e.
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Observers

Thus the observer takes the form:

This equation can also be written as:
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yk  ˆ y k

Real 
System
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Observer in Block Diagram Form

Observers



Kalman Filter

The Kalman filter is a special observer that has optimal properties under certain 
hypotheses.  In particular, suppose that.

1) wk and nk are statistically independent (uncorrelated in time and with each other)

2) wk and nk, have Gaussian distributions

3) The system is known exactly

The Kalman filter algorithm provides an observer vector J that results in an optimal 
state estimate.



Kalman Filter

The optimal J is referred to as the Kalman Gain (J*)
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Five step Kalman Filter Derivation

Background:

E[•] - Expected Value or Average
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Five step Kalman Filter Derivation

The above assumes wk and nk are zero mean.        and             

are usually diagonal.       and       are matrix versions of  standard deviation 

squared or variance.     
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Five step Kalman Filter Derivation

Step 1:

Given

Calculate
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Five step Kalman Filter Derivation

Solution:
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Five step Kalman Filter Derivation

Step 2:

What is a good estimate of  xk ?

We try the following form for the filter (where the sequence {Jk} is yet to be 

determined):
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Five step Kalman Filter Derivation

Step 3:

Given

and

Evaluate:
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Five step Kalman Filter Derivation

Solution:
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Five step Kalman Filter Derivation

Let

Then applying the result of  step 2 we have
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Five step Kalman Filter Derivation

Step 4:

Given

Evolves according to

What is the best (optimal) value for J (call it )? 
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Five step Kalman Filter Derivation

Solution:

Since  Pk+1 is quadratic in Jk, it seems we should be able to determine Jk so as 

to minimize Pk+1.

We first consider the scalar case.

The equation for Pk+1 then takes the form

Differentiate with respect to jk
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Five step Kalman Filter Derivation

Also pk evolves according to the equation on the top of  the slide 

with jk replaced by the optimal value jk*.
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Five step Kalman Filter Derivation

Step 5:

Bring it all together.

Given

where

Find optimal filter.
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Five step Kalman Filter Derivation

Solution:
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Five step Kalman Filter Derivation

Example:

Solution:
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Five step Kalman Filter Derivation

Solution:


