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* Lecture aims:

* Have a working knowledge of reference inputs, optimal control, and internal model

design.




Introduction

x =f(x,u), =x(0)=xp
y = g(x,u)

Control problem:
DR {

Find stabilizing control strategy that

G /t F(x(7), u(r))dr

* Minimize objective functional

* Satisfies constraints

u(t) e, x(r) e X

* is robust towards uncertainty

T e




Introduction

Control problems:

1 The Minimum Time Control Problem J = Edf =t —1o

2 The Terminal Control Problem J = [x(tr) = E(t0)] " S[x(tr) — E(tp)]

3 The Minimum Control Effort Problem J = r a" (OR(D)u(r) dr

4 The Optimal Servomechanism or Tracking Problem
J= rr [x(1) = E(O]"QUO[x(1) = E(1)]dt = [EET{I}QU}BI{I]:]I

5 The Optimal Regulator Problem "

J = x"(17)Sx(1;) +J [x(0" Q(e)x(1) + u" (NR(1)u(r)] ds

Iy




Solution strategies

Closed loop optimal control Open loop optimal control
Feedback: u=k(x) Input trajectory: u=u(t,x,)
s.t. closed loop trajectories satisfying optimality solving optimization problem
Advantages: Advantages:
Feedback * Computationally feasible
Uncertainty Drawbacks:
Disturbances * No feedback
Unstable systems Disturbances?
Drawbacks Unstable systems

- UHid k()2 Uncertainty




Possible solution 1 : MPC with online optimization

Solve optimization problem over finite horizon

Ip
min {J(m(t), )= /t F(X(T),u(T))dT}

A
U={ug|tsUit1ftr--}

Setpoint
Implement optimal input for T2[t,t+0] _ Setp

w U:{Um, ""ut+N|t}

Re-optimize at next sample (feedback)

Optimal control inputs implicitly via Prediction horizon
optimalization




MPC with online optimization

(Allgower, 2004)

prediction horizon
future

P
set-point

-~

- = -

input (- T" -

predicted state

—

optimal input « at time ¢ + 0

1 [ | -...

t+flsz .t+5+Tp




(General Case

* Min/max

Lf
J:fll'[x[tg),tg,x[tf},tf)—l—/ L(x(t),u(t),t)dt

0




(General Case

tf

Min J:(1;(x(tﬂ),tﬂ,x(ff),tf)+/ C(x(t),u(t), 1) dt

® = Endpoint cost
L =Lagrangian
i =S of ol

= Statc

tn




(General Case

ty

Min J = cI;(x{tﬂ),tD,x(ff),tf)+/ L(x(t),u(t),t)dt

t
® = Endpoint cost- final product u

L =Lagrangian
i =S of ol

= Statc




(General Case

Ly

Min T = B(x(ta) to, x{t7), ) + [ L(x(D).u(D).0)a
@ = Endpoint cost- final product 2

L = Lagrangian — describes dynamics of system

i =G onttol

= Statc




(General Case

Min

ty

J:fIi(x[tg},tg,x(ff),tf}-l—/ L(x(t),u(t),t)dt

to

@ = Endpoint cost- final product

L. = Lagrangian — describes dynamics of system

u = Control — what we can do to the system

= Statc




(General Case

Ly

Min J=EIJ(}{(fg},tg,x(tf},tf}—l—/ C(x(t),u(t),t) dt

t
@ = Endpoint cost- final product :

L. = Lagrangian — describes dynamics of system
u = Control — what we can do to the system

X= State — properties of the system




(General Case

Matrix Riccati Differential Equation

P(1) + P(DA(1) + AT ()P(1) = P()B(OR™ ()B' ()P(1) = —Q(1)
The final condition of matrix P(t) and
matrix K(t) is called the Kalman matrix u(r) = =R~ (B ()P(1)x(1)

K(t) = =R~ (0B (1P(1)

X I
ﬂ x(t)= Artix(t)+ Bit)uit)
===,_p ’
x”r.- /i = 'tf.l




(General Case

Matrix Riccati Differential Equation
P() + P(OA(D) + AT(OP(1) = P(OB(OR™ (OB (1)P(1) = —Q(1)

S 1s positive definite and Q(t) is at least nonnegative definite,
or vice versa, and R(t) is positive definite, then a minimum J
exists if and only if the solution P(t) of the

Riccatt equation

x(t) = A(t)x(1)+ Bithuft)

-R B iy

Pitlx(t)

Pit)+ P A(t) + A" (1) P(t) - P(OB(OR™ (1B (1) Pyt) = -Q(1)

Controller




Discrete-Time State-Space Model

Xk+1 =AXk T Buk
Y =CXi

The above state-space system is deterministic since no
noise is present.




Discrete-Time State-Space Model

We can introduce uncertainty into the model by adding noise terms

Process

/ noise
Xk+1 =AXk +Buk ‘|‘Wk

s CXk +N k
y \ Measurement

noise

This is referred to as a stochastic state-space model.




Discrete-Time State-Space Model

This is illustrated below: X, - state vector
lwk - A - system matrix
T \ B - input matrix
i 10 B - C - output matrix
: output (PV,,)
noise free output (PV)
process noise
measurement noise
control input (MV)

.|B A




Observers

We are interested in constructing an optimal observer for the

following state-space model: Yo A, =Bl LW

Y =CX¢ +ny

An observer is constructed as follows:

Rir =AR, +BuU +J (Y — Y )

where [ is the observer gain vector, and Y is the best estimate

ij//é e yk :ka .




Observers

Thus the observer takes the form:

R =AR¢ +BU +J (Yx —CXy)

This equation can also be written as:

Xk+1 :(A—JC)XK +Jyk +Buk




Observers

Observer in Block Diagram Form




Kalman Filter

The Kalman filter 1s a special observer that has gptimal properties under certain
hypotheses. In particular, suppose that.

1)  w, and 7, are statistically independent (uncorrelated in time and with each other)
2)  w, and 7, have Gaussian distributions

3) The system is known exactly

The Kalman filter algorithm provides an observer vector [ that results in an optimal
state estimate.




Kalman Filter

The optimal | is referred to as the Kalman Gain (J*)

Rein =AR¢ +BU + I3 * (Y« — 9« )

y:CXk

L Optimal
Controller

r(kT) \
X(kT)

-

|

Kalman Filter
State Estimator




Five step Kalman Filter Dertvation

Background:
E[°] - Expected Value or Average
> 2 =cov (wy =E|[w,w] ] W, —vector

(scalar:c2=var(w, )=E[w?]) X2 -matrix
>2=cov(n, =E[ncn] ] n,—vector

(scalar:c2=var(n, )=E[n?]) > 2 —matrix




Five step Kalman Filter Dertvation

The above assumes w, and 7, are zero mean. 32 and =;
lly di eI Gl e ' ' f standard deviati
are usually diagonal. 32 and X 2 are matrix versions of standard deviation
squared or variance.




Five step Kalman Filter Dertvation

Step 1:

Given

Calculate

Xks1 = AXy + Wy

=
E

oG = B

:WleI ]:Ziv

Pk :E[kal;l']




Five step Kalman Filter Dertvation

Solution:

E[xkﬂxg+1 ]: E [(Axy +wyi )(Ax +w )T ]

=E[(Axe +wi )(x] AT +w] )]
= E[(Axioxt AT )+ (Axow )+ (wiod AT )+ (wiow )]

= AE[xixg JAT +E[Axowy [+E(wioxg AT )+ E [y wy |
= AP A" 10+0+>5

B ARA 15




Five step Kalman Filter Dertvation

Step 2:
Xk+1 =AXk ‘|‘Buk ‘|‘Wk

Yk =CXy +N
What is a good estimate of x, ?

We try the following form for the filter (where the sequence {] .} is yet to be

a ned): A
sl Rn =AR +BU +J 0 (Ve —CRy)




Five step Kalman Filter Dertvation

Step 3:
Given
Xk+1 =AXk +Buk +Wk
Y =CX +ny
g Risr =AX +BU +Jy (Y —CXy)

Evaluate: COV(Xk —Xk ) =E ka —Xk )(Xk —Xk )T J




Five step Kalman Filter Dertvation

Solution:

P~

ki1 = X1 — Ry
= AX, +Bu, +w, —(AX, +Bu, +J, y —J«CXy )
=AX, +W, —J, (Cx, +n, )+J,CX,
=AX, —JCX, +WwW, —Jn;
(A L C)X oW, Jom




Five step Kalman Filter Dertvation

I:)k+1 — = [)?k+1 )?J+1 ]
Then applying the result of step 2 we have

P.—(A LEIB(A 1€l £y ) 0]




Five step Kalman Filter Dertvation

Step 4:

Given

Evolves according to

P (A JEIP (A 1 &) > &l Mgl

What is the best (gptimal) value for ] (call i£] | )?




Five step Kalman Filter Dertvation

Solution:

Since P, 1s quadratic in J,, it seems we should be able to determine [, so as

to minimize P, ;.

: 2 2 O 2
We first consider the scalar case. Pk = (a = Jk C) Pk +Ow+ JOn

The equation for P, then takes the form OpPy.; 2(a— jiC)ep, +2 j o2
- AT R K k“n

Ditferentiate with respect to 7,
0=—(a- jkC) pcC+ jxo2




Five step Kalman Filter Dertvation

Also p, evolves according to the equation on the top of the slide
with 7, replaced by the optimal value 7, *.

Jx *:aka(Cka+Ur? )_1

The corresponding Matrix version 1s

i~ 3 —AP G (EPE > 1




Five step Kalman Filter Dertvation

Step S:
Bring it all together. Xi.1 = AX, +BuU, +W,
Given Vi = CX + Ny
. :
whnere st:E_WleI]
>2 =E[nen] ]

Py = E|(Xo —Ro )(Xo — X )T}

X Y Initial state estimate

Find optimal filter.




Five step Kalman Filter Dertvation

Solution:

The Kalman Filter i =AX|< +Bu, +J ; (Vi =CX)

le—APC! (CPC] 32

B (A e (A e Y ] Y

_AlP, PC(CP.CI L CP AT i 52




Five step Kalman Filter Dertvation

The régulatnr shown in b'i-gﬁre 9.1 contains a plﬁnt that is described by

[:I] - [—HI —12] [:l] " m"

y=[1 0]

Example:

and has a performance index

= [ sl

Determine

{a) the Riccati matrix P
(b) the state feedback matrix K

01 0
Solution: . _2] “=H
(2 0
0 1

] R = scalar = 1




Five step Kalman Filter Dertvation

PA+A'"P+Q-PBR'B'P=0

PA — [Fn P|3:| [ 0 1 } _ [—Flz P —EPJJ]
pun pn)l-1 =2 —pn pa—2pn

Solution:

0 —1 , — —
QLTF:[ 12 P21 Pz }

1 =2 3 pi—2pa pia—2p»

PBR'B'P =




Five step Kalman Filter Dertvation

. -y — 2pya I
Solution: ! P "] +
—p2  pn —2pn

—Pn =P
P —2pn pi2—2pn
[

2 U] Pi2Pu P12Pa
~ ~ =0
01 PaPn P
Since P is symmetric, py = pi2

—pr2—p12+2—pp,=0

= 2Pz — P —piapn =0

—pn+pn—2pi2—prapn =0

Pi2—=2pn+ P12 —2pn+ l—.ﬂ-lg =0




Five

step Kalman Filter Dertvation

Solution:

P+ 2pa—2=0
solving
piz=pn =0.732 and -2.732
Using positive value
p1iz=pn = 0732

2p12 —4pn+1—p3, =0
pgl +4pn — 2464 =10

solving
P =0.542 and —4.542
Using positive value

par = 0.542




Five step Kalman Filter Dertvation

i — (2 % 0.732)—0.542 — (0.732 x 0.542) =0

Solution: i1 = 2.403

From equations (9.42), (9.43) and (9.44) the Riccati matrix is

2403 0.732
0.732 0.542

0.732 0.542

K=R'B'P=1[0 1][

2.403 {1.?32]

K=[0.732 0.542]




